1753, from French ellipse (17c.), from Latin ellipsis "ellipse," also, "a falling short, deficit," from Greek elleipsis (see ellipsis). So called because the conic section of the cutting plane makes a smaller angle with the base than does the side of the cone, hence, a "falling short." First applied by Apollonius of Perga (3c. B.C.E.).
In geometry, a curve traced out by a point that is required to move so that the sum of its distances from two fixed points (called foci) remains constant. If the foci are identical with each other, the ellipse is a circle; if the two foci are distinct from each other, the ellipse looks like a squashed or elongated circle.
Note: The orbits of the planets and of many comets are ellipses.